● 临床经验与技术交流 ●

三维水箱测量系统在超长服役直线加速器质控中 的应用*

谷珊珊,巩汉顺,王运来,戴相昆,宋圆源,吴青南,鞠忠建△ 100853 北京,解放军总医院 放射治疗科

[摘要] 目的:利用三维水箱对超长服役直线加速器进行质控,分析实施过程和质控结果,以更好地监测加速器的 性能,保障临床治疗的准确性。方法:收集 2017 年 7 月至今的 Elekta Synergy 直线加速器月检质控数据。测量使用 德国 PTW 公司生产的三维水箱系统,共计 26 组有效数据。采用机器验收标准分析输出数据,6MV、10MV 能量射线 平坦度标准参考值为 100% ±6%、对称性标准参考为 100% ±3%。6MV、10MV 能量 X 射线质参考值分别为 67.5%、73.0%,误差允许范围为±2%。记录每次水箱架设时间。分析其中出现的非理性现象。结果:Y、X 轴方向, 6MV 能量射野平坦度测量误差为4.01% ±0.44%、4.93% ±0.44%、对称性测量误差为0.76% ±0.35%、0.95% ± 0.43%;10MV 能量射线平坦度测量误差为 3.53% ±0.72% 、5.07% ±0.59%,对称性测量误差为 0.79% ±0.32%、 1.31% ±0.66%。6MV、10MV 射线质测量误差为0.59% ±0.26%、1.36% ±0.44%。6MV、10MV 能量射线平坦度、 对称性、射线质测量结果均在误差允许范围内。水箱从架设到调试成功的时间为(37.19 ± 6.89) min。结论:测量结 果表明,在严密的质控实施下,加速器运行状况良好。

[关键词] 三维水箱; 月检; 质量控制; 医用直线加速器

[中图分类号] R730.55 [文献标志码] A doi:10.3969/j. issn. 1674-0904.2020.06.009

引文格式: Gu SS, Gong HS, Wang YL, et al. Use of three-dimensional water scanning system in quality control of long service linear accelerator [J]. J Cancer Control Treat, 2020,33(6):507-512. [谷珊珊, 巩汉顺, 王运来, 等. 三维水箱测量系统在超长服役直线加速器质 控中的应用[J]. 肿瘤预防与治疗,2020,33(6):507-512.]

Use of Three-Dimensional Water Scanning System in Quality Control of **Long Service Linear Accelerator**

Gu Shanshan, Gong Hanshun, Wang Yunlai, Dai Xiangkun, Song Yuanyuan, WU Qingnan, Ju Zhongjian Department of Radiation Oncology, Chinese PLA General Hospital & Medical School of Chinese PLA, Beijing 100853, China

Corresponding author: Ju Zhongjian, E-mail: 15801234725@163.com

This study was supported by National Key Research and Development Program of China (NO. 2016YFC0105715) and National Natural Science Foundation of China (NO. 2017FCTSYS3027).

[Abstract] Objective: To monitor the long service linear accelerator for accurate clinical treatment by using the three-dimensional (3D) water scanning system. Methods: The monthly tested data of Elekta Synergy Medical Linear Accelerator from July 2017 up to the present were collected and measured using the PTW 3D water scanning system for a total of 26 valid datasets. The acceptance criteria was used to analyze the output data. The standard reference value of flatness was 100% ± 6%, and the symmetry was 100% ±3% for 6MV, 10MV energy X-ray. The X-ray quality reference values of 6MV, 10MV energy were 67.5% and 73.0%, respectively, and the tolerance range was $\pm 2\%$. The time of 3D water tank erection was recorded. Results: The flatness, symmetry, and ray quality reference measurement results of 6MV, 10MV energy ray were

[收稿日期] 2019-11-06 [修回日期] 2020-01-17 [基金项目]

国家自然科学基金(编号:2017FCTSYS3027)

「通讯作者」 △鞠忠建,E-mail:15801234725@163.com

within the allowable error range. In the Y and X directions, the measurement errors of the 6MV energy field flatness were *国家重点研发计划(编号:2016 YFC0105715); 4.01% ± 0.44% and 4.93% ± 0.44%, and the measurement errors of symmetry were 0.76% ± 0.35 % and 0.95% \pm 0.43%; the measurement errors of the 10MV energy ray flatness were 3.53% $\pm 0.72\%$ and 5.07% $\pm 0.59\%$, the measurement errors of symmetry was 0.79% $\pm 0.32\%$ and 1.31% $\pm 0.66\%$. The measurement errors of 6MV and 10MV ray quality were 0.59% $\pm 0.26\%$ and 1.36% $\pm 0.44\%$. The time from tank erection to commissioning success was (37.19 ± 6.89) min. **Conclusion:** The quality control of the 3D water tank are well assured, and the accelerator works well.

[Key words] Three-dimensional water tank; Monthly test; Medical linear accelerator

医用直线加速器超长服役是国内普遍存在的问题^[1]。限于经济因素等客观条件,设备更新换代慢,患者众多且放疗设备少,机器长时间超负荷运行,导致设备老化,故障频发,一方面影响临床工作流程,另一方面直接影响肿瘤的辐照剂量分布^[2-3]。因而,对医用直线加速器的质量保证和质量控制工作非常重要,以保证机器性能良好,保障临床治疗^[4]。

对于超长期运行加速器,质控工作尤其重要。 一是随着时间推移,机器硬件老化严重,电器元件接 触失灵、线路橡胶外皮易发硬破损,造成机器各种故 障频发;二是超长期运行加速器维修频繁,需保障维 修后机器各项参数在正常范围内,方可投入临床治 疗[5-6]。测量本身的质控工作十分繁锁,需要耗费 工作人员大量的时间和精力。日常测量设备有剂量 仪、二维电离室矩阵、EBT 胶片、晨检仪等设备[7-10]。 三维水箱由于操作复杂,常用于年检或加速器维修 后的检测,是保证医用电子加速器正常运行不可或 缺的测量设备。JJG589-2008《医用电子加速器辐 射源》检定规程指出医用电子加速器检测时,测量 辐射质、辐射野的均整度、辐射野的对称性等计量性 能必须使用射线分析仪,即二维或三维水箱。但是 其架设繁琐,一般架设调试时间需1小时左右,限制 了其临床使用。

本单位 Synergy 直线加速器高负荷运行已达 12 年,故障高发,但仍然承担着重要的临床治疗任务。为保证其精确运行,周密而细致的质控尤为重要。本研究使用 PTW 公司生产的三维水箱,在月检时测量加速器 X 线的射线平坦度、对称性、射线质,记录分析各参数的测量结果。

1 材料与方法

1.1 材料

1.1.1 直线加速器 医科达公司生产的 Synergy 直线加速器,如图 1 所示。2007 年装机,常年治疗负荷 12 小时/天。配有 6MV、10MV 能量的 X 线、电子线,多页光栅为 40 对,叶片厚度为 0.4 cm,因此参考射野定义为 10.4 cm×9.6 cm,最大射野为 21 cm×16 cm。并配置有 3D 验证的 X 线旋转容积成

像,2D 验证的电子射野验证装置。

1.1.2 PTW 三维水箱系统 采用德国 PTW 公司 生产的 MP3 型三维扫描水箱(图 2),主体部分包括 MP3 大型水箱,水箱相关的调整装置,MP3 蓄水柜 和升降台;电器装置包括剂量探头、标准电子附件、控制组件、悬挂式操纵台和 TANDEM 双通道静电 计。探头行程为 600 mm,扫描尺寸(L×W×H,mm)为 500×500×400,扫描分辨率为 0.1 mm。测量及参考电离室均为 PTW 公司生产的 0.125cc 指型电离室,型号为 31010,灵敏体积长度为 6.5 mm,灵敏体积直径为 5.5 mm,中心极材料为铝。水箱数据采集及分析软件为 MEPHYSTO mcc 3.0(图 3)。

图 1 医科达 Synergy 直线加速器 Figure 1. Elekta Synergy Linear Accelerator

图 2 PTW 三维水箱 Figure 2. PTW Three-Dimensional Water Tank

图 3 MEPHYSTO mcc 3.0 软件 Figure 3. MEPHYSTO mcc 3.0

1.2 方法

1.2.1 数据标准 因 2017 年下半年开始,直线加速器机器故障频发,故障总数 71 次,月均故障数 2.54次,其中更换电子元器件、电路板等维修结束后,需水箱测量各项参数。故收集 2017 年 7 月至今的直线加速器月检质控数据,共 26 组有效数据。

按机器验收标准,对称性定义为源皮距为 100 cm 时,模体 10 cm 深度处,最大射野 80% 宽度范围内,偏离中心轴对称的两点之间剂量率的最大比值(公式1)。6MV、10MV 能量射线对称性的标准参考值为 100% ±3%。

Symmetry (%) =
$$\left(\frac{D_x}{D_{-x}}\right)_{max} \times 100\%$$
 (1)

其中 D_x 、 D_{-x} 表示射野中心轴外对称的两点的吸收剂量。

平坦度(flatness)定义为在 X 射线束轴水下 10 cm 处垂直于射线束轴的平面上,10 cm×10 cm 照射野下最大、最小吸收剂量的比值(公式 2)。6MV、10MV 能量射线平坦度标准参考值为 100% ±6%。

Flatness(%) =
$$\frac{D_{\text{max}}}{D_{\text{min}}} \times 100\%$$
 (2)

其中 D_{max}、D_{min}分别表示最大、最小吸收剂量。

射线质定义为在射野中心轴上水下 10 cm 处的吸收剂量 D_{10} 与参考深度处的吸收剂量 D_0 之比的百分数(公式 3)。6MV、10MV 能量 X 射线质参考值分别为 67.5%、73.0%,误差允许范围为 $\pm 2\%$ 。

Ray quality(%) =
$$\frac{D_{10}}{D_0} \times 100\%$$
 (3)

1.2.2 月检数据采集 测量条件设置如下:源皮距 100 cm,射野 10.4 cm×9.6 cm,指型电离室长轴垂直于射野中心轴,沿径向扫描。

测量步骤如下:按检测规范放置三维水箱,注入足够的水,水深 > 40 cm。在无限出束模式下设置 6MV、10MV 光子线出束剂量率为 200MU/min。百分深度剂量(percentage depth dose, PDD)最大测量

深度为40 cm。Profile 参考深度处设为水下10 cm。测量射线在X轴和Y轴两个面上的Profile 的剂量场分布。测量结果自动存入计算机进行处理分析,得到平坦度、对称性、射线质3个参数的测量分析结果,3个参数均测量3次求平均值作为测量最终值。

记录每次水箱从架设到调试成功的时间。

2 结 果

2.1 6MV 射线测量结果

26 组有效测量数据中,6MV 射线的测量分析数据如表 1 和图 4 所示。6MV 射线的测量射野平坦度在 Y 轴方向上,测量最大值为 104.63%,最小值为 102.76%,中位数为 104.1%,误差为 4.01% ± 0.44%;X 轴方向上,测量最大值为 105.67%,最小值为 103.71%,中位数为 105.04%,误差为 4.93% ± 0.44%。6MV 射线的对称性在 Y 轴方向上,测量最大值为 101.24%,最小值为 100.44%,中位数为 100.57%,误差均值为 0.76% ±0.35%;X 轴方向上,测量最大值为 101.53%,最小值为 100.26%,中位数为 100.63%,误差为 0.95% ±0.43%。6MV 射线的射线质测量最大值为 67.89%,最小值为66.75%,中位数为 67.07,误差均值为 0.59% ±0.26%。

6MV X 射线测得的 PDD 和 Profile 曲线如图 5 所示。

图 4 6MV 射线测量数据 Figure 4. Data of 6MV X-Ray

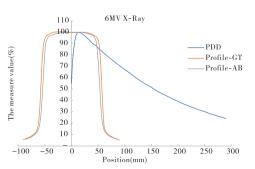


图 5 6MV X 射线的 PDD 和 Profile 曲线 Figure 5. PDD and Profile of 6MV X-Ray PDD; Percentage depth dose.

表 1 6MV 射线测量数据

Table 1. Data of 6MV X-Ray

6MV	Direction	Maximum	Minimum	Median	Error
Flatness (%)	Y	104.63	102.76	104.1	4.01 ± 0.44
	X	105.67	103.71	105.04	4.93 ± 0.44
Symmetry (%)	Y	101.24	100.44	100.57	0.76 ± 0.35
	X	101.53	100.26	100.63	0.95 ± 0.43
Ray quality (%)		67.89	66.75	67.07	0.59 ± 0.26

2.2 10MV 射线测量结果

26 组有效测量数据中,10MV 射线的测量分析数据如表 2、图 6 所示。10MV 射线的射野平坦度在 Y 轴方向上,测量最大值为 105.4%,最小值为 102.45%,中位数为 103.34%,误差为 3.53% $\pm 0.72\%$;X 轴方向上,测量最大值为 105.7%,最小值为 104.74%,中位数为 105.16%,误差为 5.07% $\pm 0.59\%$ 。10MV 射线的对称性在 Y 轴方向上,测量最大值为

误差为 0.79% ± 0.32%; X 轴方向上,测量最大值为 103.00%,最小值为 100.22%,中位数为 101.08%,误差为1.31% ± 0.66%。10MV 射线的射线质测量最大值为 72.65%,最小值为 71.93%,中位数为 72.23%,误差为 1.36% ± 0.44%。

101.42%,最小值为100.34%,中位数为100.72%,

10MV X 射线测得的 PDD 和 Profile 曲线如图 7 所示。

表 2 10MV 射线测量数据

Table 2. Data of 10MV ray

10MV	Direction	Maximum	Minimum	Median	Error
Flatness (%)	Y	105.4	102.45	103.34	3.53 ± 0.72
	X	105.7	104.74	105.16	5.07 ± 0.59
Symmetry (%)	Y	101.42	100.34	100.72	0.79 ± 0.32
	X	103.00	100.22	101.08	1.31 ± 0.66
Ray quality (%)		72.65	71.93	72.23	1.36 ± 0.44

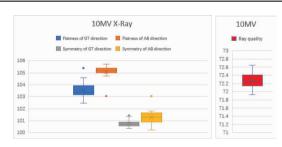


图 6 10MV 射线测量数据

Figure 6. Data of 10MV X-Ray

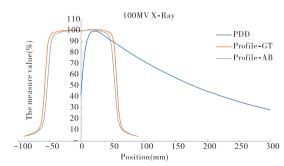


图 7 10MV X 射线的 PDD 和 Profile 曲线 Figure 7. PDD and Profile of 10MV X-Ray PDD; Percentage depth dose.

2.3 水箱架设调试时间

水箱从架设到调试成功的平均时间为(37.19

±6.89) min,其中架设所需最长时间为 65 min,最 短时间为 30 min。26 次架设调试时间记录如表 3 所示,其中,2017 年 9 月月检时,水箱调试时间较 长,原因为机器故障,多次重启服务器。2018 年 4 月月检时,水箱调试时间较长,排除原因为指型电离 室连接线故障。

表 3 26 次三维水箱架设调试时间

Table 3. Erection and Debugging Time of the Three-Dimensional Water Tank

Date of monthly inspection	Time of erection and debugging (min)	Date of monthly inspection	Time of erection and debugging (min)
2017.07	35	2018.09	34
2017.08	40	2018.10	38
2017.09	65	2018.11	32
2017.10	36	2018.12	35
2017.11	38	2019.01	36
2017.12	39	2019.03	38
2018.01	30	2019.04	36
2018.03	39	2019.05	37
2018.04	51	2019.06	33

(Continued from previous page)

Date of monthly inspection	Time of erection and debugging (min)	Date of monthly inspection	Time of erection and debugging (min)
2018.05	35	2019.07	41
2018.06	31	2019.08	35
2018.07	35	2019.09	34
2018.08	31	2019.10	33

3 讨论

测量结果表明,在严密的质量保证和质量控制下,加速器运行状况良好,机器性能稳定。水箱从架设到调试成功的平均时间约为半个小时,时间短,效率高。

放射治疗是肿瘤治疗的重要手段[11]。直线加 速器剂量性能的稳定情况直接影响肿瘤放射治疗的 疗效,运用恰当的质控工具监测加速器的各项性能 指标非常重要[12-13]。医用电子直线加速器是肿瘤 放射治疗中最主要的设备之一[14]。在大型医院中, 患者数量多、工作负荷大,直线加速器往往故障频 繁,加速器更换关键部位配件或调整机器等重大维 修后,必须使用三维水箱采集加速器数据,分析机器 性能是否达到临床治疗标准[15]。三维水箱是开展 肿瘤放射治疗的必备仪器,水箱精密的设计结构和 测量原理能确保测量结果准确[16]。国家药品食品 卫生监督局将三维水箱归类为 II 类医疗器械管理。 国内大部分大型肿瘤放疗中心、省级以上医院放疗 科、各省计量院、职业病防治院、各省疾控中心等单 位都有配置。但中小型医院放疗科,尤其是偏远地 区、地市级以下医院很少购置。目前国家卫生行政 部门虽然并没有强制执行医院放疗科配置三维水 箱,但卫生部 46 号令做出明确规定:"放射治疗场 所配备放疗剂量仪、剂量扫描装置和个人剂量报警 仪"。同时,国家肿瘤诊疗质控中心发布的《放射治 疗质量控制基本指南》指出,水箱为开展常规放射 治疗基本的质控仪器,自动扫描水箱为开展精确放 射治疗的质控仪器。

长期服役的医用直线加速器,因使用频率高,待机时间长,各部件存在老化或更换的问题,如何精确地保障加速器正常运行非常重要。使用三维水箱测量直线加速器各项参数,所测数据能准确地反映出机器运行状态,是各种测量设备比较的基准参考,其测量的准确性是其他质控工具无法达到的[17]。三

维水箱功能强大,除常用测量指标如对称性、平坦度、射线质等,其扫描数据还可分析射线半影、半高宽、最大剂量点深度等参数^[18]。能保证临床放射治疗的顺利实施。

我科 Elekta Synergy 医用电子直线加速器 2007 年投入使用,迄今已服役 11 年,加速器各项参数测量结果稳定,机器运行状态良好,仍能承担繁重的临床治疗任务,与平时细致的质控工作密不可分,尤其三维水箱测量精确,保证加速器性能稳定,从而保障肿瘤剂量分布准确,保证临床治疗效果。水箱测量能验证周检日检的准确性,及时发现问题,如因机架偏沉导致的对称性改变、靶击穿导致的输出剂量改变等重大机械参数的变化。超长服役的医用加速器,为保证机器各项参数稳定,使用三维水箱作为月检工具,可为临床工作提供翔实的基础测量质控数据。

PTW 三维水箱操作复杂,架设时间长短主要取决于测量人员的操作熟练程度,与水箱连接部件也有一定关系。以下原因会导致水箱调试失败:连接线多,测量人员误操作;设备老旧后易出现接触不良等现象;指型电离室连接线对折磨损严重;直线加速器操作失误。尽管水箱操作繁琐,但对于超长服役且没有强制报废的加速器,三维水箱是最重要的质控设备,对保障临床治疗必不可少。通过加速器重大维修后和月检水箱测量,加速器在日常质控时表现稳定。

综上所述,PTW 三维水箱对我科加速器的测量结果表明,超长服役的加速器仍能保持稳定的性能,可以满足临床治疗需要。

作者声明:本文全部作者对于研究和撰写的论 文出现的不端行为承担相应责任;并承诺论文中涉 及的原始图片、数据资料等已按照有关规定保存,可 接受核查。

学术不端:本文在初审、返修及出版前均通过中 国知网(CNKI)科技期刊学术不端文献检测系统的 学术不端检测。

同行评议:经同行专家双盲外审,达到刊发要求。

利益冲突: 所有作者均声明不存在利益冲突。

文章版权:本文出版前已与全体作者签署了论 文授权书等协议。

[参考文献]

[1] 王一琳,李璐,方鹏骞.我国医院进口与国产医用直线加速器

- 配置及使用情况分析[J]. 医学与社会,2019,32(6):69-72.
- [2] 刘浩武. 关于医用电子直线加速器的故障与维护方法探讨 [J]. 信息系统工程,2019(5):119.
- [3] 耿国星. 医用直线加速器剂量率故障的关键因素[J]. 工程技术研究,2017(6):138-139.
- [4] Barnes MP, Rowshanfarzad P, Greer PB. VMAT linear accelerator commissioning and quality assurance: Dose control and gantry speed tests[J]. J Appl Clin Med Phys, 2016, 17(3):246-261.
- [5] 郭瑞锋,梁玉新,李伶,等. ELEKTA Precise 直线加速器电离 室故障分析[J]. 中国医疗器械信息,2018,24(21):151-152.
- [6] 黄宝添, 张基永, 陆佳扬. TrueBeam 直线加速器 6MV 无均整 滤过器射束输出稳定性故障的排查[J]. 中国医疗设备,2016,31(7):162-164.
- [7] Biltekin F, Yedekci Y, Ozyigit G. Feasibility of novel in vivo EP-ID dosimetry system for linear accelerator quality control tests[J]. Australas Phys Eng Sci Med, 2019, 42(4):995-1009.
- [8] Somayeh G, Reza MH, Ali JA, et al. Dose distribution verification for GYN brachytherapy using EBT Gafchromic film and TG-43 calculation [J]. Rep Pract Oncol Radiother, 2016,21(5):480-486.
- [9] Looe H-K, Delfs B, Poppinga D, et al. 2D convolution kernels of ionization chambers used for photon-beam dosimetry in magnetic fields: The advantage of small over large chamber dimensions[J]. Phys Med Biol, 2018,63(7):075013.
- [10] Retna P, Ravikumar M, Sathiyan S, et al. Evaluation of optically stimulated luminescence dosimeter for exit dose in vivo dosimetry in radiation therapy[J]. Cancer Res Ther, 2018,14(6):1341-1349.
- [11] 谭明宇, 冯梅, 黄建鸣, 等. 基于 DNA 损伤反应基因的肿瘤放

- 射治疗剂量分割模式的研究进展[J]. 肿瘤预防与治疗,2018,31(5):369-373.
- [12] Hirashima H, Nakamura M, Miyabe Y, et al. Quality assurance of non-coplanar, volumetric-modulated arc therapy employing a Carm linear accelerator, featuring continuous patient couch rotation [J]. Radiat Oncol, 2019, 14(1):62.
- [13] Rijken J, Schachenmayr H, Crowe S, et al. Distributive quality assurance and delivery of stereotactic ablative radiotherapy treatments amongst beam matched linear accelerators: A feasibility study[J]. J Appl Clin Med Phys, 2019, 20(4):99-105.
- [14] Dosanjh M, Aggarwal A, Pistenmaa D, et al. Developing innovative, robust and affordable medical linear accelerators for challenging environments [J]. Clin Oncol (R Coll Radiol), 2019, 31(6): 352-355.
- [15] O Daniel JC, Yin FF. Quantitative approach to failure mode and effect analysis for linear accelerator quality assurance [J]. Int J Radiat Oncol Biol Phys, 2017, 98(1):56-62.
- [16] Martins JC, Saxena R, Neppl S, et al. Optimization of phase space files from clinical linear accelerators [J]. Phys Med, 2019,64:54-68
- [17] Smith K, Balter P, Duhon J, et al. AAPM Medical Physics Practice Guideline 8. a.: Linear accelerator performance tests [J]. J ApplClin Med Phys, 2017, 18(4):23-39
- [18] Jarrad B, J AS, Trent C, et al. Technical note: Experimental characterization of the dose deposition in parallel MRI-linacs at various magnetic field strengths [J]. Med Phys, 2019, 46 (11): 5152-5158.